82 research outputs found

    Long-lived states of oscillator chain with dynamical traps

    Full text link
    A simple model of oscillator chain with dynamical traps and additive white noise is considered. Its dynamics was studied numerically. As demonstrated, when the trap effect is pronounced nonequilibrium phase transitions of a new type arise. Locally they manifest themselves via distortion of the particle arrangement symmetry. Depending on the system parameters the particle arrangement is characterized by the corresponding distributions taking either a bimodal form, or twoscale one, or unimodal onescale form which, however, deviates substantially from the Gaussian distribution. The individual particle velocities exhibit also a number of anomalies, in particular, their distribution can be extremely wide or take a quasi-cusp form. A large number of different cooperative structures and superstructures made of these formations are found in the visualized time patterns. Their evolution is, in some sense, independent of the individual particle dynamics, enabling us to regard them as dynamical phases.Comment: 8 pages, 5 figurs, TeX style of European Physical Journa

    Truncated Levy Random Walks and Generalized Cauchy Processes

    Full text link
    A continuous Markovian model for truncated Levy random walks is proposed. It generalizes the approach developed previously by Lubashevsky et al. Phys. Rev. E 79, 011110 (2009); 80, 031148 (2009), Eur. Phys. J. B 78, 207 (2010) allowing for nonlinear friction in wondering particle motion and saturation of the noise intensity depending on the particle velocity. Both the effects have own reason to be considered and individually give rise to truncated Levy random walks as shown in the paper. The nonlinear Langevin equation governing the particle motion was solved numerically using an order 1.5 strong stochastic Runge-Kutta method and the obtained numerical data were employed to calculate the geometric mean of the particle displacement during a certain time interval and to construct its distribution function. It is demonstrated that the time dependence of the geometric mean comprises three fragments following one another as the time scale increases that can be categorized as the ballistic regime, the Levy type regime (superballistic, quasiballistic, or superdiffusive one), and the standard motion of Brownian particles. For the intermediate Levy type part the distribution of the particle displacement is found to be of the generalized Cauchy form with cutoff. Besides, the properties of the random walks at hand are shown to be determined mainly by a certain ratio of the friction coefficient and the noise intensity rather then their characteristics individually.Comment: 7 pages, 3 figure
    corecore